15 research outputs found

    Continuous roadmapping in liver TACE procedures using 2D–3D catheter-based registration

    Get PDF
    PURPOSE: Fusion of pre/perioperative images and intra-operative images may add relevant information during image-guided procedures. In abdominal procedures, respiratory motion changes the position of organs, and thus accurate image guidance requires a continuous update of the spatial alignment of the (pre/perioperative) information with the organ position during the intervention. METHODS: In this paper, we propose a method to register in real time perioperative 3D rotational angiography images (3DRA) to intra-operative single-plane 2D fluoroscopic images for improved guidance in TACE interventions. The method uses the shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vascular tree using a shape similarity metric. Subsequently, the catheter is registered to this vessel, and the 3DRA is visualized based on the registration results. The method is evaluated on simulated data and clinical data. RESULTS: The first selected vessel, ranked with the shape similarity metric, is used more than 39 % in the final registration and the second more than 21 %. The median of the closest corresponding points distance between 2D angiography vessels and projected 3D vessels is 4.7–5.4 mm when using the brute force optimizer and 5.2–6.6 mm when using the Powell optimizer. CONCLUSION: We present a catheter-based registration method to continuously fuse a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape similarity

    Non-rigid registration of liver ct images for ct-guided ablation of liver tumors

    Get PDF
    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice coefficient for the livers of 91.4%, a mean surface distance of 4.4 mm and a mean distance between corresponding landmarks of 4.7 mm. For the three cases with a refinement step, the registration result significantly improved (p<0.05) compared to the result of the initial non rigid registration method (DICE of 90.3% vs 71.3% and mean surface distance of 5.1 mm vs 11.3 mm and mean distanc

    Accuracy of semi-automated versus manual localisation of liver tumours in CT-guided ablation procedures

    Get PDF
    Objectives: To compare the accuracy of liver tumour localisation in intraprocedural computed tomography (CT) images of computer-based rigid registration or non-rigid registration versus mental registration performed by interventional radiologists. Methods: Retrospectively (2009-2017), 35 contrast-enhanced CT (CECT) images incorporating 56 tumours, acquired during CT-guided ablation procedures and their corresponding pre-procedural diagnostic CECTs were retrieved from the picture archiving and communication system (PACS). The original intraprocedural CECTs were de-enhanced to create a virtually unenhanced CT image (VUCT). Alignment of diagnostic CECTs to their corresponding intraprocedural VUCTs was performed with non-rigid or rigid registration. Mental registration was performed by four interventional radiologists. The original intraprocedural CECT served as the reference standard. Accuracy of tumour localisation was assessed with the target registration error (TRE). Statistical differences were analysed with the Wilcoxon sig

    Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming

    Get PDF
    OBJECTIVES: Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. METHODS: A novel semiautomatic segmentation method to quantify coronary fibrous cap thickness in optical coherence tomography is introduced. To cope with the most challenging issue when estimating cap thickness (namely the diffuse appearance of the anatomical abluminal interface to be detected), the proposed method is based on a robust dynamic programming framework using a geometrical a priori. To determine the optimal parameter settings, a training phase was conducted on 10 patients. RESULTS: Validated on a dataset of 179 images from 21 patients, the present framework could successfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation results from the proposed method were in good agreement with the reference tracings performed by a medical expert (mean absolute error and standard deviation of [Formula: see text] ) and were similar to inter-observer reproducibility ([Formula: see text] , R = .74), while being significantly faster and fully reproducible. CONCLUSION: The proposed framework demonstrated promising performances and could potentially be used for online identification of high-risk plaques

    Mesenteric artery calcium scoring: a potential screening method for chronic mesenteric ischemia

    Get PDF
    Objective: A practical screening tool for chronic mesenteric ischemia (CMI) could facilitate early recognition and reduce undertreatment and diagnostic delay. This study explored the ability to discriminate CMI from non-CMI patients with a mesenteric artery calcium score (MACS). Methods: This retrospective study included CTAs of consecutive patients with suspected CMI in a tertiary referral center between April 2016 and October 2019. A custom-built software module, using the Agatston definition, was developed and used to calculate the MACS for the celiac artery (CA), superior mesenteric artery (SMA), and inferior mesenteric artery. Scoring was performed by two blinded observers. Interobserver agreement was determined using 39 CTAs scored independently by both observers. CMI was defined as sustained symptom improvement after treatment. Non-CMI patients were patients not diagnosed with CMI after a diagnostic workup and patients not responding to treatment. Results: The MACS was obtained in 184 patients, 49 CMI and 135 non-CMI. Interobserver agreement was excellent (intraclass correlation coefficient 0.910). The MACS of all mesenteric arteries was significantly higher in CMI patients than in non-CMI patients. ROC analysis of the combined MACS of CA + SMA showed an acceptable AUC (0.767), high sensitivity (87.8%), and high NPV (92.1%), when using a ≥ 29.7 CA + SMA MACS cutoff. Comparison of two CTAs, obtained in the same patient at different points in time with different scan and reconstruction parameters, was performed in 29 patients and revealed significant differences in MACSs. Conclusion: MACS seems a promising screening method for CMI, but correction for scan and reconstruction parameters is warranted. Key Points: • A mesenteric artery calcium score obtained in celiac artery and superior mesenteric artery ha

    Automatic segmentation, detection and quantification of coronary artery stenoses on CTA

    Get PDF
    Accurate detection and quantification of coronary artery stenoses is an essential requirement for treatment planning of patients with suspected coronary artery disease. We present a method to automatically detect and quantify coronary artery stenoses in computed tomography coronary angiography. First, centerlines are extracted using a two-point minimum cost path approach and a subsequent refinement step. The resulting centerlines are used as an initialization for lumen segmentation, performed using graph cuts. Then, the expected diameter of the healthy lumen is estimated by applying robust kernel regression to the coronary artery lumen diameter profile. Finally, stenoses are detected and quantified by computing the difference between estimated and expected diameter profiles. We evaluated our method using the data provided in the Coronary Artery Stenoses Detection and Quantification Evaluation Framework. Using 30 testing datasets, the method achieved a detection sensitivity of 29 % and a positive predi

    Validation of automated Alberta Stroke Program Early CT Score (ASPECTS) software for detection of early ischemic changes on non-contrast brain CT scans

    Get PDF
    Purpose: In ASPECTS, 10 brain regions are scored visually for presence of acute ischemic stroke damage. We evaluated automated ASPECTS in comparison to expert readers. Methods: Consecutive, baseline non-contrast CT-scans (5-mm slice thickness) from the prospective MR CLEAN trial (n = 459, MR CLEAN Netherlands Trial Registry number: NTR1804) were evaluated. A two-observer consensus for ASPECTS regions (normal/abnormal) was used as reference standard for training and testing (0.2/0.8 division). Two other observers provided individual ASPECTS-region scores. The Automated ASPECTS software was applied. A region score specificity of ≥ 90% was used to determine the software threshold for detection of an affected region based on relative density difference between affected and contralateral region. Sensitivity, specificity, and receiver-operating characteristic curves were calculated. Additionally, we assessed intraclass correlation coefficients (ICCs) for automated ASPECTS and observers in comparison to the reference standard in the test set. Results: In the training set (n = 104), with software thresholds for a specificity of ≥ 90%, we found a sensitivity of 33–49% and an area under the curve (AUC) of 0.741–0.785 for detection of an affected ASPECTS region. In the test set (n = 355), the results for the found software thresholds were 89–89% (specificity), 41–57% (sensitivity), and 0.750–0.795 (AUC). Comparison of automated ASPECTS with the reference standard resulted in an ICC of 0.526. Comparison of observers with the reference standard resulted in an ICC of 0.383–0.464. Conclusion: The performance of automated ASPECTS is comparable to expert readers and could support readers in the detection of early ischemic changes

    Review on retrospective procedures to correct retinal motion artefacts in OCT imaging

    Get PDF
    Motion artefacts from involuntary changes in eye fixation remain a major imaging issue in optical coherence tomography (OCT). This paper reviews the state-of-the-art of retrospective procedures to correct retinal motion and axial eye motion artefacts in OCT imaging. Following an overview of motion induced artefacts and correction strategies, a chronological survey of retrospective approaches since the introduction of OCT until the current days is presented. Pre-processing, registration, and validation techniques are described. The review finishes by discussing the limitations of the current techniques and the challenges to be tackled in future developments

    Microvascular damage assessed by optical coherence tomography angiography for glaucoma diagnosis: a systematic review of the most discriminative regions

    Get PDF
    A growing number of studies have reported a link between vascular damage and glaucoma based on optical coherence tomography angiography (OCTA) imaging. This multitude of studies focused on different regions of interest (ROIs) which offers the possibility to draw conclusions on the most discriminative locations to diagnose glaucoma. The objective of this work was to review and analyse the discriminative capacity of vascular density, retrieved from different ROIs, on differentiating healthy subjects from glaucoma patients. PubMed was used to perform a systematic review on the analysis of glaucomatous vascular damage using OCTA. All studies up to 21 April 2019 were considered. The ROIs were analysed by region (macula, optic disc and peripapillary region), layer (superficial and deep capillary plexus, avascular, whole retina, choriocapillaris and choroid) and sector (according to the Garway–Heath map). The area under receiver operator characteristic curve (AUROC) and the statistical difference (p-value) were used to report the importance of each ROI for diagnosing glaucoma. From 96 screened studies, 43 were eligible for this review. Overall, the peripapillary region showed to be the most discriminative region with the highest mean AUROC (0.80 ± 0.09). An improvement of the AUROC from this region is observed when a sectorial analysis is performed, with the highest AUROCs obtained at the inferior and superior sectors of the superficial capillary plexus in the peripapillary region (0.86 ± 0.03 and 0.87 ± 0.10, respectively). The presented work shows that glaucomatous vascular damage can be assessed using OCTA, and its added value as a complementary feature for glaucoma diagnosis depends on the region of interest. A sectorial analysis of the superficial layer at the peripapillary region is preferable for assessing glaucomatous vascular damage

    3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: A feasibility study

    Get PDF
    Wall shear stress, the force per area acting on the lumen wall due to the blood flow, is an important biomechanical parameter in the localization and progression of atherosclerosis. To calculate shear stress and relate it to atherosclerosis, a 3D description of the lumen and vessel wall is required. We present a framework to obtain the 3D reconstruction of human coronary arteries by the fusion of intravascular ultrasound (IVUS) and coronary computed tomography angiography (CT). We imaged 23 patients with IVUS and CT. The images from both modalities were registered for 35 arteries, using bifurcations as landmarks. The IVUS images together with IVUS derived lumen and wall contours were positioned on the 3D centerline, which was derived from CT. The resulting 3D lumen and wall contours were transformed to a surface for calculation of shear stress and plaque thickness. We applied variations in selection of landmarks and investigated whether these variations influenced the relation between shear stress and plaque thickness. Fusion was successfully achieved in 31 of the 35 arteries. The average length of the fused segments was 36.4 ± 15.7 mm. The length in IVUS and CT of the fused parts correlated excellently (R2= 0.98). Both for a mildly diseased and a very diseased coronary artery, shear stress was calculated and related to plaque thickness. Variations in the selection of the landmarks for these two arteries did not affect the relationship between shear stress and plaque thickness. This new framework can therefore successfully be applied for shear stress analysis in human coronary arteries
    corecore